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Abstract. Fourier transforms occur in a variety of
chemical systems and processes. A few examples include
obtaining spectral information from correlation func-
tions, energy relaxation processes, spectral densities
obtained from force autocorrelation functions, etc. In
this article, a new functional transform, named the dual
propagation inversion (DPI) is introduced. The DPI
functional transform can be applied to a variety of
problems in chemistry, such as Fourier transforms of
time correlation functions, energy relaxation processes,
rate theory, etc. The present illustrative application is to
generating the frequency representation of a discrete,
truncated time-domain signal. The DPI result is com-
pared with the traditional Fourier transform applied
to the same truncated time signal. For both noise-free
and noise-corrupted time-truncated signals, the DPI
spectrum is found to be more accurate, particularly as
the signal is more severely truncated. In the DPI, the
distributed-approximating-functional free propagator is
used to propagate and denoise the signal simultaneously.

Key words: Dual propagation inversion — Distributed
approximating functional — Fourier transform — Time
correlation function — Denoise

1 Introduction

In a variety of physics, chemistry and engineering
contexts, it is common to require the transformation of
information from a “physical” domain to a complemen-
tary domain. This generally involves the evaluation of a
function transform of the form

G(t) = / K(t, 0)g(w)do | ()

where K(tz,w) is called the “transform kernel”. The
quantities ¢ and @ are known as conjugate variables.
Extracting the information represented by g(w) from
G(1) is referred to as an “inversion”. Important examples

of the inversion problem are provided by Fourier and
Laplace transforms. Such transforms are ubiquitous
in chemistry. Some examples include the evaluation of
molecular spectra by Fourier transform of time corre-
lation functions [1], energy relaxation processes [2, 3],
spectral densities by Fourier transform of force auto-
correlation functions [4], Wigner distribution functions
in multidimensional systems [5], reaction rate constants
[6], absorption or Raman spectra from autocorrelation
functions [7] and extraction of vibrational frequencies
from a molecular-dynamics-simulated time signal [§].
From experimental or computational studies, the G(7)
function value is typically known only on a finite,
discrete set of points. Although a formal analytical result
may be obtained by directly applying the appropriate
mathematical inversion of the analytical function, G(¢),
one generally faces serious difficulties in numerically
determining the value of g(w) from a finite number
of G(t) values. Additionally, noise is generally always
present in the measured data. In the Laplace transform,
the inversion is typically unstable owing to amplification
of noise contained in measured G(¢;) data [9]. Inverse
Fourier transforms yield low-resolution spectra and low
accuracy for low-frequency processes when a time signal
of sufficiently long duration is not available [10, 11].

In this article, we describe a new procedure for
numerically inverting such an integral equation. This
method, which we term the ‘““dual propagation inver-
sion” (DPI), makes use of the distributed-approximat-
ing-functional (DAF) free propagator [12] to carry out
the inversion (but other numerical techniques such as the
fast Fourier transform [13, 14] may also be used). The
DPI method can be applied to many physical conjugate—
variable transforms such as energy—temperature trans-
forms, etc. We shall frame our discussion in the context
of time- and frequency-domain signals. The time-
domain signal and the frequency-domain spectrum are
related by the Fourier transform

G(r) = / do exp(—iont)g() (2)
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and its inverse

g(w):% / dt explion)G() . 3)

One difficulty in the direct inversion by Eq. (3) is that, in
order to resolve low-frequency features, one needs to
know the autocorrelation function (time signal) for a
long duration. When the signal is available only on a set
of discrete times and for too short a time period, the
direct Fourier transform becomes inaccurate. Several
elegant methods, such as the filter-diagonalization
techniques, developed by Neuhauser [15] and modified
by Mandelshtam and Taylor [16], have been proposed
for such problems. Ours is an alternative approach.

2 Theory
In the present DPI approach, a factor exp [ioc(co — wo)z}

is inserted into Eq. (2), and an auxiliary function is
defined as

g(ta o, (1)0)
= / dw exp [icx(a) - wo)z} exp(—iot)g(w) . 4)
It is well known that

explin( — on)?] = (—)<w p<4—%>]w> )

so the factor exp [ioc(w - wo)z}

can be interpreted as
) 2

a matrix element of the “free propagator” exp (ﬁ%)

acting on exp(—iw?)g(w). Therefore, the integration over

o in Eqi (4) is equivalent to evaluating the action of

TP

exp(fx%) in the continuous “w” representation and
the introduction of the phase [iz(w — wo)]* is equivalent
to freely propagating exp(—iwt)g(w) up to the general-
ized time of 1/(4x). Henceforth, we use the term
“duration”. This enables us to write Eq. (4) as

wW=wmq

- i 3 i d? .
g(t;0,m9) = <E> {exp <4—aw> [CXP(—’W)Q(@)]}

(6)
The function g(w) is then obtained simply by inverting

Eq. (6),

glay) = (%)%exp(iwot) exp<— i & )g(t;a,wo) . (7

t

g(w) is the same as g(wg), where we choose w to equal
whatever value of frequency w we desire.

For this Eq. (7) to be of any use, we need an inde-
pendent method for calculating the auxiliary function
from the experimentally (or numerically) determined

G(#). Next, we shall show how to calculate g(¢; o, o)
from G(¢). Define

h(t; o, 0) = expliwot)g(t; o, o) - (8)
According to Eq. (4), Eq. (8) can be rewritten as

h(t; 0, 00)
:/da) exp [ioc(w—wo)z}eXp[—i(w—WO)ﬂg(w) - 9)

By performing a partial derivative with respect to o on
Eq. (9) and two partial derivatives with respect to ¢ on
Eq. (9), respectively, we obtain

%iz(t; o, ) = / dow i(w — wp)* exp [ifx(a) - wo)z]
x exp[—i(w — wo)t]g(w) (10)
and
2

0 ) 2 . 2
yh(t;ogwo) = /dw i“(w— wy)” exp [zoc(w — ) ]

x exp[—i(w — wo)ilg(w) . (11)
From Egs. (10) and (11), it follows that

2

o - -
5 10 @00) = iz h(t; 0, w0) (12)
This has the same form as the free particle time-
dependent Schrédinger equation, whose propagator is
known:

g(t; o, )
2
= exp(—iwot) exp <—ioc %) [exp(imot)G(t)] . (13)

Note that [exp(imgt)G(z)] is a frequency-modulated time
signal. In signal processing, the effect of the modulation
factor exp(iwot) is to translate the spectrum of the signal
G(1) by an amount w,. The frequency wg and “duration”
o are parameters which can be chosen for numerical
convenience. Thus, our procedure is, first, to propagate
freely the frequency-modulated signal [exp(iwot)G(¢)]
in the time domain over a “duration” of o to obtain
g(t; o, m0) and, second, to propagate the resulting
g(to; o, ) in the frequency domain over the duration
of 1/(4a). Note that the product of the two propagation
“durations” is a constant o x ;- =1 and, therefore,
obeys a ‘“‘time-energy’’-like uncertainty principle. For
numerical convenience, we choose o« =1/2.

The DAF free propagator is used to perform the two
propagations. In actual computations, the discretized
version of the DAF free propagator is applied. In the
first propagation, Eq. (13) becomes [12, 18]

g(t; 0, o) = exp(—iwot) Y Flt,t|M,(0), At, o]

k=—00

x [exp(imoty) G(1)] (14)
where



F(t7 tk‘Mv 0-(0)7At7 OC)

M/ 2n+1
W$(20)
( t—tk )
X exXp
t
( (o > (15

by = (~1)" / [(27[)%6(0);1!22"} : (16)

The second propagation (Eq. 7) can be done analyti-
cally; however, for numerical convenience, we chose to
follow a procedure analogous to the first propagation, so

o0

g(wop) = exp(imote) Z F [wop, wog|M, 6(0), Awy, o]

g=—00

x {g(tes o 0) } (17)
M/2 0 2n+1
ACU() Z b ( O(>>
2
X exp <— 7(60017 - woq) )

20(x)?

H, (M) . (18)

V20 ()

In these equations, ¢(0) and M are DAF parameters, the
H,,, are the even Hermite polynomials [12, 18], Az is the
time-grid interval and Awy is the frequency-grid interval.
The time ¢, is arbitrary (i.e., the result is independent of
t.) if the procedure is carried out exactly using Eqgs. (7)
and (13). If the DAF approximation is “good”, then
the result depends only weakly on z.. As noted later, in
all computatlons we set 7.=0. In the first propagation
a (oc) o (0)+2z<x and in the second propagatlon
o*(0) = 2(0) + i(1/2x). For numerlcdl convenience, we
may choose o= 1/2, so a°(z)=6>(0)+i in both propaga-
tions. Since the signals of interest are finite (truncated),
the range of the summation index k in Eq. (16) or ¢
in Eq. (19) extends from the left-most grid point to
the right-most grid point. Note that by using matrix
products, one can write the two propagations as a single
matrix operation, but this is not done here for clarity of
presentation.

F[w()p,a)()q|M,0( ) A(U(),

3 Model calculation

In actual experimental measurements, the time signal
always has a finite duration, or ‘“‘compact support”.
Similarly, one extracts a spectrum only over a finite
range of frequency. However, compact support in the
frequency domain implies an infinite data sequence
in the time domain, and vice versa. As a result, one is
always faced with aliasing [19] effects in signal analysis.
Here we show that the DPI method is robust for
processing a short-length, discretized data sequence. We
compare the result with the spectrum obtained by the
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usual discrete Fourier transform. Both generate aliasing
in the inverted spectrum.
The model signal we consider to test the DPI method

0<w<mn
otherwise

(19)

Although this may seem to be a simple spectrum, the
occurrence of a discontinuity in the first derivative at
w =0, 7, causes the signal to “ring” for long times in the
physical domain. Truncation of the time domain signal
poses a significant challenge for Fourier inversion
aliasing. The compact support model spectrum, g(w),
is shown in Fig. 1. Its time-domain representation, G(¢),
is easily found analytically using Eq. (2), yielding

1 + cos(tn)
1—-¢
As pointed out earlier, it has slowly decaying behavior as
a function of time. In our numerical simulation, the
signal G(?) is replaced by a finite set of function values,
so the signal is truncated and discretized. The sampling
interval used here is Ar=0.05. Similarly, our DAF free
propagator is also discretized in wg, with a sampling grid
spacing Awy=0.05. By Eq. (16), a discretized version of
g(t; o, p), the auxiliary function, is obtained. Note that
g(t; o, 9) is a function of time, ¢, propagation duration,
o, and auxiliary frequency variable, w,. The auxiliary
function is propagated in the frequency domain by
Eq. (7). We note that the auxiliary variable ¢ is formally
eliminated as a result of the second propagation. As
mentioned earlier, ¢ is, in principle, arbitrary, but
numerically we found that use of =0 yields reliable
results. The first propagation duration, o, must be
chosen consistent with the second propagation duration,
1/4a, in the complementary domain. A shorter propa-
gation duration in one domain implies a longer propa-
gation duration in the complementary domain. Thus,
after the two free propagations, g(w), the spectrum
of the truncated, discretely sampled time signal, G(), is
obtained. To verify the DPI approach to inverting a time

_— sin(¢x)

Glr) = -2

—00 <t <0 (20)

model spectrum 1

08

06 -

02+

0.0 1
-3.14 -1.57

471 6.28

Fig. 1. Model spectrum
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signal, we compare the resulting DPI spectrum with the
exact result and that obtained using a standard Fourier
transform for several truncated discretizations of the
model signal, Eq. (22). The Fourier transform is applied
by a periodic extension of the truncated, discretized time
signal.

3.1 Model calculation on a slowly decaying,
truncated signal

In this calculation, the DAF parameters were M =40
and ¢(0)/A=2.5 for both free propagations. A relatively
long data sequence is generated by discretely sampling
the continuous time signal G(z) from t=-45 to 45.
This truncated version of G(¢) is shown in Fig. 2. The
sampling interval A¢=0.05 is short enough to satisfy the
Nyquist [19] condition. The spectrum produced by the
DPI is shown in Fig. 3 and the spectrum generated from
the same data by the Fourier transform is shown in
Fig. 4. We see from Figs. 3 and 4 that for this case the
two methods yield visibly indistinguishable and highly
accurate spectra differing from the exact spectrum only
near the discontinuities in the derivative of the original
spectrum. Both the DPI and Fourier transform produce
the same slight amount of visibly observable aliasing
near =0 and w=mn. Because the time duration is
sufficiently long, the inverted signal has almost all of the
original signal energy in the correct frequency regime.

3.2 Model calculation on noise-free
and noise-corrupted short-time truncated signal

In the calculation described in Sect. 3.1, the truncated
time signal is sufficiently long and has decayed close
enough to zero, so one does not see large effects of
truncation with either the DPI or the Fourier transform.
As is standard in signal processing theory, a truncated
signal can be taken as equivalent to the product of the
original signal and a square window, where the width of
the square window is just the truncated signal duration.

2.0

real part
e imaginary part

0.5

-0.5F

Fig. 2. (45, 45) truncated time signal G(7)
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Fig. 3. Spectrum by dual propagation inversion (DPI). [Distribu-

ted-approximating-functional (DAF) parameter M =40, o(0)/
A)=2.5]

1.0 T T T T

------ real
P A imaginary|
model

0.6 4
3
D g4l _

0.2k 4

0.0l - . mrmmimimme - -

-3.14 -1,‘57 0 |00 1,{57 3.‘14 4}71 6.28

Fig. 4. Spectrum by Fourier transform

Since the Fourier transform of a square window is a sin C
function, generally the decay will be proportional to 1/z.
In the present case, the window coincides with the nodes
of the signal, so the discontinuity does not occur until
the first derivative. This causes a faster 1/¢* decay for the
model signal. In the time domain, we are using a square
window that creates a discontinuity in the function itself.
The result is a slow decay for the inverted signal for both
the DPI and the Fourier inversion. Under noise-free
conditions, it is the truncation by the square window
that produces the spectrum distortion, known as the
Gibbs effect. In our second model calculation, we
consider the DPI spectrum resulting from a much
shorter time signal, one which is one-ninth of the signal
duration used in the calculation described in Sect. 3.1.
The time signal in the new truncated range from -5 to 5
is shown in Fig. 5. The sampling interval is again
At=0.05. The DPI result is shown in Fig. 6 and the
Fourier transform result is shown in Fig. 7. Both are
compared to the exact model spectrum and one can see



significant differences between the DPI and the Fourier
transform. The real part of the DPI spectrum is visibly
closer to the model spectrum in the compact region

20 ——F—F—T—T—TF—T—F—T——T——T——T——

real
- — - -imaginary

Truncated G(t)

1.0 T T
----- real
o8l —-—--imaginary |
model
0.6 g
—_
3
>
D 0.4 g
0.2 —
0.0
. T T T : : . T T T .
314 -1.57 0.00 1.57 3.14 4.71 6.28

Fig. 6. Spectrum by DPI [time duration (-5, 5), DAF parameter
M=6, a(0)/A=10]
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Fig. 7. Spectrum by Fourier transform [time duration (=5, 5)]
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between 0 and 7, except near the boundaries 0 and =.
Thus, the DPI does better at reproducing the model
spectrum in the true signal region. The Fourier trans-
form loses energy near w = m/2, where the highest values
of the model spectrum occur. Another interesting feature
is that the real part of the DPI spectrum decreases faster
than that of the Fourier transform outside the region
0 < w < 7. Even though both the DPI and the Fourier
spectra exhibit aliasing, the faster DPI decay outside the
true spectrum region is closer to the ideal compact
support spectrum; however, the imaginary part of the
DPI spectrum is slightly worse than that of the Fourier
transform spectrum.

A more interesting test of the DPI is for a noise-
corrupted time signal. It is well known [17] that the
Hermite DAF is a low-pass filter. Since the Hermite
DAF is just a special case of the DAF free propagator
for a vanishing duration, the DAF free propagator
behaves similarly in removing high-frequency noise. We
plot in Fig. 8 the spectrum of the DAF free propagator,
showing that it will filter out high-frequency components
associated with noise.

A time signal truncated from —5 to 5 with 20% ran-
dom noise is shown in Fig. 9. The computed DPI spec-
trum is shown in Fig. 10 and the Fourier transform
spectrum is shown in Fig. 11. Because of noise corrup-
tion, the Fourier transform spectrum has significant dis-
tortion of both the real and imaginary parts. Under the
same noise conditions, the DPI spectrum is more stable
and its real part still closely tracks the model spectrum in
the region 0 < w < 7. Additionally, the real part of the
DPI spectrum decreases slightly faster to zero than the
Fourier transform in the presence of noise. The DPI is
very robust with respect to noise compared to the stan-
dard discrete Fourier transform. In the present case, the
DAF parameters are M =6, a(0)/A=11 compared to the
noise-free case values M =6, (0)/A=10. Figure 8 shows
that for a fixed M, increasing ¢(0)/A shrinks the width of
the low-pass filter and so more frequencies will be filtered
out. This systematic behavior provides some guidance for
choosing the DAF free propagator parameters combined
with o to deal with a corrupted time signal.

06 - N B 4

04 | -
— M=6 ¢(0)/A=10

e M=6 o(0)/A=11
02 | R B -

magnitude of DAF free propagator spectrum

0.0 T IN TN RN SRR SRR S S SR L

Fig. 8. Spectrum of DAF free propagator
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Fig. 10. Spectrum by DPI [time duration (-5, 5), +20% noise,
DAF parameter M =6, a(0)/A=11]
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Fig. 11. Spectrum by Fourier transform [time duration (-5, 5),
+20% noise]

3.3 Model calculation on noise-free
and noise-corrupted short-time signal with padding

One technique to reduce aliasing further is to connect
the truncated signal to some decaying function. The
“padded” signal will then decay to zero more smoothly,
giving rise to a smaller Gibbs effect and less distortion in
the physical region of compact support. Optimally, the
added tail should simulate the original signal as closely
as possible, in order to produce the least distortion. In
the present study, we employ an exponentially decaying
tail, given by

g(t) = —0.04exp(—0.1]¢]) l{] >7 . (23)

The tail is reasonably good for replacing the infinite
signal segment that has been cut off (although from
Eq. 22, it clearly dies off too rapidly). To ensure the
smoothness of the modified signal, a new technique
called DAF padding [17] is applied. One assumes a gap
between the known signal data and a region where
the discretized signal values are determined by the tail
function. The unknown discrete values in the gap are
obtained by solving linear algebraic equations, resulting
in a least-squares optimized DAF fit of the known and
unknown data.

For this calculation, we first use DAF padding to fill
the gaps between the noise-free truncated time signal
located between r=-5 and r=5 and the artificial tail
for |¢t]>7. The resultant signal waveform is shown in
Fig. 12a. The gap detail is shown in Fig. 12b and c. As
shown in Fig. 12b and c, the DAF padding supplies the
gap values between |5| and |7|, which are based on the
known signal information and the assumed tail. Com-
pared to Fig. 2, we see that the main change in the
padded signal and the true one is the more rapid decay
to zero imposed by Eq. (23).

By applying both the DPI and Fourier transforms on
the padded version of the discrete time signal, we obtain
the spectrum shown in Fig. 13 for the DPI and Fig. 14
for the Fourier transform. Here the DAF parameters are
M=6, o(0)/A=9. It is clear that the DPI spectrum
is superior to that obtained by Fourier transform. The
padded signal is, of course, not the same as the original
signal and this is reflected in the fact that the Fourier
transform is distorted both within and outside the
compact support region. The DPI is not as sensitive to
the detailed modification of the original data and yields
a spectrum which still behaves correctly in most of the
region 0 < w < 7; however, it also yields significantly less
aliasing for 7 < <0 compared to the Fourier transform
results in Fig. 14.

As previously discussed [17], DAF padding not only
retains the basic information contained in the input,
truncated signal, but also removes noise during the
padding procedure. The tail was also DAF-padded to the
20% noise-corrupted signal (Fig. 9), where Fig. 15a
shows the resultant time signal and Fig. 15b and ¢ the
padding detail. Figure. 15b and ¢ shows that the padded
signal between the known region and the exponential tail
is smooth and similar to Fig. 12b and c, respectively. The
resulting DPI and Fourier transform spectra are shown
in Figs. 16 and 17, respectively. We see that the DPI
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Fig. 12. a Time signal (DAF padding with exponential tail). b Real parts comparison of original and padded data in noise-free case.
¢ Imaginary parts comparison of original and padded data in noise-free case
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Fig. 13. Spectrum by DPI with DAF padding [DAF parameter
M =6, 0(0)/A)=9]

procedure treats the noise very well while following the
model spectrum closely in the compact support region
and decreasing rapidly to zero outside that region. Here

1.0F T T =
----- real
0.8 —-—--imaginary |
model
0.6 -
—_
)
oy 04 E
0.2 —
0.0
. I . ; . . . . , ; .
-3.14 -1.57 0.00 1.57 3.14 4.71 6.28

Fig. 14. Spectrum by Fourier transform (DAF padding)

the DAF parameters are M =6, ¢(0)/A=10. The Fourier
transform spectrum is strongly distorted relative to the
model, showing greater sensitivity to the noise in the
signal, the exponential tail and the padding gap. We
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Fig. 15. a Time signal (DAF padding 20% noise-corrupted signal). b Real parts comparison of original and padded data in noise-
corruption case. ¢ Imaginary parts comparison of original and padded data in noise-corruption case
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Fig. 16. Spectrum by DPI with DAF padding 20% noise-corrupt-
ed signal [DAF parameter M =6, (0)/A=10]

conclude that the traditional Fourier transform is not as
robust with respect to noise and padding for a given long-
range signal. By contrast, the DPI continues to yield the
information contained in the known short-signal seg-
ment and is not highly sensitive to the detailed padding.

10 F T T T =
real
08 imaginary -
model
06 =
—
3
=
D 04 4
0.2 F e
0.0 ponmtempeiitamy A et e
T T
-3.14 -1.57 4.71 6.28

Fig. 17. Spectrum by Fourier transform (DAF padding 20%
noise-corrupted signal)

4 Conclusion

In this article, we have introduced a new method for
numerical inversion of the Fourier transform, which we
call the DPI method. The use of the DPI is illustrated for



a model problem and the results are compared with the
spectrum obtained by the Fourier transform. Our results
show that the DPI is more robust than the Fourier
transform. In addition, the DPI can remove noise with
a minimum of distortion to the true signal, in contrast
to the Fourier transform, which is more sensitive to
distortions in the signal due to noise. The DPI plus DAF
padding is effective at denoising and delivering a good
spectrum, but it still produces some ringing in the
vicinity of the edges of the true or original compact
support frequency-domain signal. Significantly better
results should be possible in the DPI if one pads to a
more realistic long-range tail.
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